CS2230 Computer Science |l: Data
Structures
Homework 4
Asymptotic Analysis

Due February 24, 2017, 11:59pm

Goals for this assignment
e Practice using Big-Oh notation
e Analyze the running times of some algorithms

Submission Checklist

You should submit a PDF file titled hw4.pdf. Upload it on ICON under Assignments > Homework
4. Physical paper copies are not acceptable.

Part 0: Read about Asymptotic Analysis and take Quiz 4

To help you better understand Big-Oh notation and running time of algorithms, it is
recommended that you read Chapter 4 in your textbook.

Part 1: Experiments

1. Ryan and Brandon are arguing about the solution to your upcoming homework
assignment on sorting algorithms. Ryan claims that his O(n log n)-time solution is
always faster than Brandon’s 0(n?) solution. However, Brandon claims that he ran
several experiments on both algorithms on his laptop and sometimes his was faster.
Explain what probably happened.

Part 2: Growth rate

2. Order the following functions by asymptotic growth rate:
a. Snlogn+4n | 12n* | 150 | 4logn
b. 12n*+5n | 2'° | 6logn | 5n°
c. 6" |7nlogn | 8n+9 | 60000*n°
d. 63 | 64n | 3logn |2™?*| 108"

Part 3: Proof and Analysis

3. Give a good big-Oh characterization in terms of n of the running time of the following.
Provide brief justification for your answer (in terms of finding a k and n,).
a. 4n’+3n*+7
b. 15n'*+3nlogn +2n
c. 3nlogn+2logn+n
d. 12n*3~n +50n
4. Give a good big-Omega characterization in terms of n of the running time of the
following. Provide brief justification for your answer (in terms of finding a k and n,).
a. Slogn+12n°
b. 6nlogn+5logn+4n
5. Show that the following statements are true:
a. 4™ isin0(4")
b. nlognisinQ(n)

Part 4: Algorithm Analysis

6. Given the following algorithms below, give a big-Oh characterization of the running
time in terms of the size of the input, n. Provide justification (description, equations,
and/or diagrams) for your answer.

d.

public static boolean two_sum(int[] arr) ({
for (int i=0; i<arr.length; i++) {
for (int j=i; j<arr.length; Jj++) {
if (i!=j && arr[il+arr[j]==0) {
return true;
}
}
}

return false;

b.

public static int something(int n){
for (int i=0; i<42; i++) {
n += i;
}

return n;

c. First, find the big-Oh running time of inside, in terms of input sizes n, and ny.

private static double[] inside(double[] a, double[] b) {

double[] ¢ = new double[a.length];
int 1 = 0, j = 0;
for (int k = 0; k < c.length; k++) {

if (i < a.length) {
if (j < b.length) {
if(a[i] <= b[]j]) {

clk] = a[i];
} else {
c[k] = b[]];
}
} else {
clk] = a[i];
i++;
}
} else {
if (j < b.length) {
c[k] = b[]];
Jt++;
}
}
}
return c;

}

Now, find the running time of outside, in terms of the size n, using your answer from above.

public static double[] outside (double[] list) {
int x = list.length;
if (x <= 1) return list;

= new double[x/2];

double[] a

double[] b = new double[x - x/2];

for (int i = 0; i < a.length; i++) {
al[i] = list[i];

}

for (int i = 0; i < b.length; i++) {
bli] = list[i + x/21;

}

return outside (inside(a, b)) ;

d.

int strange_sum(int[] arr) {

if (arr.length == 1) {
return arr[0];
} else {

int[] arrLeft = new int[arr.length/2+1];

int[] arrRight = new int[arr.length/2];

for (int i=0; i<arr.length/2+1; i++) {
arrLeft[i] = arr[i];

}

for (int i=arr.length/2+1; i<arr.length; i++) {
arrRight[i-(arr.length/2+1)] = arr[i];

}

return strange sum(arrLeft) + strange sum(arrRight);

e.

public static void printSomething(int n) {
for(int 1 = 0; 1 < n; i++)
{
for(int j = n; 7 > 0; j/=2)
{
System.out.println ("Something") ;

