
CS2230	Computer	Science	II:	Data	
Structures	

Homework	4	
Asymptotic	Analysis	

Due	February	24,	2017,	11:59pm	
	

Goals	for	this	assignment	
• Practice	using	Big-Oh	notation	
• Analyze	the	running	times	of	some	algorithms	

Submission	Checklist	
	
You	should	submit	a	PDF	file	titled	hw4.pdf.	Upload	it	on	ICON	under	Assignments	>	Homework	
4.	Physical	paper	copies	are	not	acceptable.	

Part	0:	Read	about	Asymptotic	Analysis	and	take	Quiz	4	
	
To	help	you	better	understand	Big-Oh	notation	and	running	time	of	algorithms,	it	is	
recommended	that	you	read	Chapter	4	in	your	textbook.			

Part	1:	Experiments	
	

1. Ryan	and	Brandon	are	arguing	about	the	solution	to	your	upcoming	homework	
assignment	on	sorting	algorithms.		Ryan	claims	that	his	O(n	log	n)-time	solution	is	
always	faster	than	Brandon’s	O(n2)	solution.	However,	Brandon	claims	that	he	ran	
several	experiments	on	both	algorithms	on	his	laptop	and	sometimes	his	was	faster.	
Explain	what	probably	happened.		

Part	2:	Growth	rate		
	

2. Order	the	following	functions	by	asymptotic	growth	rate:	
a. 5n	log	n	+	4n			|			12n2			|			150			|			4logn	
b. 12n4	+	5n			|			210			|			6log	n			|			5n3	
c. 6n			|	7n	log	n			|			8n	+	9	|	60000*n6	
d. 63			|			64n			|			3log	n			|	2n+2	|	10log	n	

Part	3:	Proof	and	Analysis		
3. Give	a	good	big-Oh	characterization	in	terms	of	n	of	the	running	time	of	the	following.	

Provide	brief	justification	for	your	answer	(in	terms	of	finding	a	k	and	𝑛").	
a. 4n5+	3n3	+	7	
b. 15n12	+	3n	log	n	+	2n	
c. 3n	log	n	+	2log	n	+	n	
d. 12n*3^n	+	50n		

4. Give	a	good	big-Omega	characterization	in	terms	of	n	of	the	running	time	of	the	
following.		Provide	brief	justification	for	your	answer	(in	terms	of	finding	a	k	and	𝑛").	

a. 5	log	n	+	12n2	
b. 6n	log	n	+	5log	n	+	4n	

5. Show	that	the	following	statements	are	true:	
a. 4n+5	is	in	O(4n)	
b. n	log	n	is	in	Ω(n)	

Part	4:	Algorithm	Analysis		
6. 	Given	the	following	algorithms	below,	give	a	big-Oh	characterization	of	the	running	

time	in	terms	of	the	size	of	the	input,	n.	Provide	justification	(description,	equations,	
and/or	diagrams)	for	your	answer.	

a.

public static boolean two_sum(int[] arr) {
 for (int i=0; i<arr.length; i++) {
 for (int j=i; j<arr.length; j++) {
 if (i!=j && arr[i]+arr[j]==0) {
 return true;
 }
 }
 }
 return false;
}

b. 	
	

public static int something(int n){
 for (int i=0; i<42; i++) {
 n += i;
 }
 return n;
}

	
	
	
	
	

c. First,	find	the	big-Oh	running	time	of	inside,	in	terms	of	input	sizes	na	and	nb.	
	

 private static double[] inside(double[] a, double[] b) {
 double[] c = new double[a.length];
 int i = 0, j = 0;
 for (int k = 0; k < c.length; k++) {
 if (i < a.length) {
 if (j < b.length) {
 if(a[i] <= b[j]) {
 c[k] = a[i];
 } else {
 c[k] = b[j];
 }
 } else {
 c[k] = a[i];
 i++;
 }
 } else {
 if (j < b.length) {
 c[k] = b[j];
 j++;
 }
 }
 }
 return c;
}

Now,	find	the	running	time	of	outside,	in	terms	of	the	size	n,	using	your	answer	from	above.	
	

 public static double[] outside(double[] list) {
 int x = list.length;
 if (x <= 1) return list;
 double[] a = new double[x/2];
 double[] b = new double[x - x/2];
 for (int i = 0; i < a.length; i++) {
 a[i] = list[i];
 }
 for (int i = 0; i < b.length; i++) {
 b[i] = list[i + x/2];
 }
 return outside(inside(a, b));
 }

	
	

d. 	

int strange_sum(int[] arr) {
 if (arr.length == 1) {
 return arr[0];
 } else {
 int[] arrLeft = new int[arr.length/2+1];
 int[] arrRight = new int[arr.length/2];
 for (int i=0; i<arr.length/2+1; i++) {
 arrLeft[i] = arr[i];
 }
 for (int i=arr.length/2+1; i<arr.length; i++) {
 arrRight[i-(arr.length/2+1)] = arr[i];
 }
 return strange_sum(arrLeft) + strange_sum(arrRight);
 }
}

	
e. 	

	
public static void printSomething(int n){
 for(int i = 0; i < n; i++)
 {
 for(int j = n; j > 0; j/=2)
 {
 System.out.println("Something");
 }
 }
}

	

